The multivariate arithmetic Tutte polynomial
نویسندگان
چکیده
We introduce an arithmetic version of the multivariate Tutte polynomial recently studied by Sokal, and a quasi-polynomial that interpolates between the two. We provide a generalized Fortuin-Kasteleyn representation for representable arithmetic matroids, with applications to arithmetic colorings and flows. We give a new proof of the positivity of the coefficients of the arithmetic Tutte polynomial in the more general framework of pseudo-arithmetic matroids. In the case of a representable arithmetic matroid, we provide a geometric interpretation of the coefficients of the arithmetic Tutte polynomial. Résumé. Nous introduisons une version arithmétique du polynôme de Tutte multivariée récemment étudié par Sokal, et un quasi-polynôme qui interpole entre les deux. Nous proposons une représentation de Fortuin-Kasteleyn generalisée pour les matroı̈des arithmétiques représentables, avec des applications aux colorations et flux arithmétiques. Nous donnons une nouvelle preuve de la positivité des coefficients du polynôme de Tutte arithmétique dans le cadre plus général des matroı̈des pseudo-arithmétiques. Dans le cas d’un matroı̈de arithmétique représentable, nous proposons une interpretation geometrique des coefficients du polynôme de Tutte arithmetique.
منابع مشابه
Tutte polynomials of wheels via generating functions
We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.
متن کاملThe arithmetic Tutte polynomials of the classical root systems
Many combinatorial and topological invariants of a hyperplane arrangement can be computed in terms of its Tutte polynomial. Similarly, many invariants of a hypertoric arrangement can be computed in terms of its arithmetic Tutte polynomial. We compute the arithmetic Tutte polynomials of the classical root systems An, Bn, Cn, and Dn with respect to their integer, root, and weight lattices. We do ...
متن کاملOn the tutte polynomial of benzenoid chains
The Tutte polynomial of a graph G, T(G, x,y) is a polynomial in two variables defined for every undirected graph contains information about how the graph is connected. In this paper a simple formula for computing Tutte polynomial of a benzenoid chain is presented.
متن کاملOn the Algebraic Complexity of Some Families of Coloured Tutte Polynomials
We investigate the coloured Tutte polynomial in Valiant’s algebraic framework of NP-completeness. Generalising the well known relationship between the Tutte polynomial and the partition function from the Ising model, we establish a reduction from the permanent to the coloured Tutte polynomial, thus showing that its evaluation is a VNP−complete problem.
متن کاملGalois groups of multivariate Tutte polynomials
The multivariate Tutte polynomial ẐM of a matroid M is a generalization of the standard two-variable version, obtained by assigning a separate variable ve to each element e of the ground set E. It encodes the full structure of M . Let v = {ve}e∈E , let K be an arbitrary field, and suppose M is connected. We show that ẐM is irreducible over K(v), and give three self-contained proofs that the Gal...
متن کامل